CALU: collision avoidance with localization uncertainty (demonstration)
نویسندگان
چکیده
CALU is a multi-robot collision avoidance system based on the velocity obstacle paradigm. In contrast to previous approaches, we alleviate the strong requirement for perfect sensing (i.e. global positioning) using Adaptive Monte-Carlo Localization on a per-agent level.
منابع مشابه
Multi-robot collision avoidance with localization uncertainty
This paper describes a multi-robot collision avoidance system based on the velocity obstacle paradigm. In contrast to previous approaches, we alleviate the strong requirement for perfect sensing (i.e. global positioning) using Adaptive Monte-Carlo Localization on a per-agent level. While such methods as Optimal Reciprocal Collision Avoidance guarantee local collision-free motion for a large num...
متن کاملCollision Avoidance for Unmanned Aircraft using Markov Decision Processes
Before unmanned aircraft can fly safely in civil airspace, robust airborne collision avoidance systems must be developed. Instead of hand-crafting a collision avoidance algorithm for every combination of sensor and aircraft configuration, we investigate the automatic generation of collision avoidance algorithms given models of aircraft dynamics, sensor performance, and intruder behavior. By for...
متن کاملUncertainty Models for TTC-Based Collision-Avoidance
We address the problem of uncertainty-aware local collision avoidance within the context of time-to-collision based navigation of multiple agents. We consider two specific models that account for uncertainty in the future trajectories of interacting agents: an isotropic model which conservatively considers all possible errors, and an adversarial model that assumes the error is towards a head-on...
متن کاملFuzzy logic based collision avoidance for a mobile robot
Navigation and collision avoidance are major areas of research in mobile robotics that involve varying degrees of uncertainty. In general, the problem consists of achieving sensor based motion control of a mobile robot among obstacles in structured and/or unstructured environments with collision-free motion as the priority. A fuzzy logic based intelligent control strategy has been developed her...
متن کاملPlanning under uncertainty for dynamic collision avoidance
We approach dynamic collision avoidance problem from the perspective of designing collision avoidance systems for unmanned aerial vehicles. Before unmanned aircraft can fly safely in civil airspace, robust airborne collision avoidance systems must be developed. Instead of hand-crafting a collision avoidance algorithm for every combination of sensor and aircraft configurations, we investigate au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012